Narrow Laser Linewidth Measurement Using
Delayed Self Heterodyne Method

A project report submitted

By:
RUBEENA N.V
National Photonics Fellow-2011

Under the guidance of
Dr. Deepa Venkitesh
Indian Institute of Technology Madras
Chennai 34

October-2011

Keywords: Linewidth laser, heterodyne detection, Lorentzian linewidth, power spectrum
CONTENTS

Summary 1

Chapter 1 Introduction 2

Chapter 2 Linewidth Measurement Techniques 6
  2.1 Heterodyne Detection 7
  2.2 Frequency Discriminator 8
  2.3 Delayed Self-Homodyne Technique 11
  2.4 Delayed Self-heterodyne Detection 13
    2.4.1 Linewidth interpretation 14
    2.4.2 Effect of fiber delay in DSHI 15
    2.4.3 Advantage disadvantages of DSHI Technique 15
  2.5 Comparison of Techniques 16

Chapter 3 Laser Linewidth Measurements Using Self-heterodyne Detection Technique 17
  3.1 Theory of Laser Linewidth 17
    3.1.1 Schawlow-Townes linewidth 17
    3.1.2 Phasor derivation of laser linewidth 18
    3.1.3 The Laser Field Spectrum 23
  3.2 Delayed Self-Heterodyning of Laser Fields 26
    3.2.1 Power Spectrum of Delayed self-heterodyne Interferometer 27
  3.4 Acousto-optic modulator versus Phase modulator 30

Chapter 4 Experimental Implementation of DSHI 32
  4.1 Experimental-setup 32
  4.2 System Configuration and Key Components 33
    4.2.1 The laser 33
    4.2.2 The coupler 33
    4.2.3 Frequency Shifter 34
    4.2.4 Polarization control 3
4.2.5 The Low Noise Amplifier (LNA) 36
4.2.6 Electrical Spectrum Analyzer 37

4.3 System Design and Optimization 37
  4.3.1 Estimation of parameter: $\omega_m$ 37
  4.3.2 Estimation of parameter: $\tau_d$ 38
  4.3.3 System intensity control 39

4.4 Experimental observation and Result Interpretation 39
  4.4.1 Frequency domain – spectrum 39
  4.4.2 Vortex II (narrow linewidth laser).
    4.4.2 a) Linewidth Versus Different delay length. 41
    4.4.2 b) Linewidth Versus Different Power. 42
  4.4.3 Tunable Laser Source (81689A).
    4.4.3 a) Linewidth Versus Wavelength of laser. 43
    4.4.3 b) Linewidth Versus power of laser 45
  4.4.4 Resolution of system 46

Chapter 5 Conclusions and Future Work 48
  5.1 Conclusions 48
  5.2 Future Work 48

Appendix A) The Quality Factor 49
   B) Total number of transitions per second into one mode 51

List of References 55
LIST OF TABLES AND FIGURES

Tables:

4.1- DSHI linewidth relation 41
4.2- Linewidth versus different power 41
4.3- Laser power Vs 3 dB laser linewidth for 25km delay 43
4.3- DSHI linewidth relation 44
4.4- Linewidth versus Wavelength 45
4.5- Linewidth versus power of laser 45
4.6- Fiber delay versus Resolution 47

Figures:

2.1- Schematic of the setup for optical heterodyne detection 7
2.2- Convolution of narrow linewidth laser and signal spectrum 8
2.3- Optical frequency discriminator for linewidth measurement 9
2.4- Optical delayed self-homodyne measurement set-up for laser
   Linewidth measurement. (a) Mach-Zehnder interferometer.
   (b) Michelson interferometer. (c) low-finesse Fabry-Perot filter 12
2.5- The delayed self-homodyne mixing of the laser field itself 13
2.6- Schematic setup for optical delayed self-heterodyne detection 13
2.7- Delayed self-heterodyne mixing of the laser field 14
2.8-Power spectrum for various values of $\tau/\tau_c[5]$  

3.1- Phasor Model: Phase change due to one photon  
3.2- Phasor model- Phase change due to N spontaneous emissions  
3.3- Delayed self-heterodyne mixing of the laser field  
3.4- Laser linewidth measurement setups with a phase modulator  

4.1- Laser linewidth measurement setups-Self-heterodyne setup  
with an acousto-optic modulator (AOM).  
4.2- The coupler  
4.3- Orientation of wave fronts  
4.4- Result of a measurement performed with the heterodyne technique with a  
 delay less than coherence length of laser  
4.5- DSHI experimental set up  
4.6- Laser power Vs 3 dB, 10dB and 20 dB laser linewidth  
4.7- Laser power Vs 3 dB laser linewidth for 25km delay  
4.8- Phase noise spectra of Vortex II  
4.9- Phase noise spectra of TLS (81689A).  
4.10- Dependence of resolution on fiber delay  

B.1- A rectangular cavity of dimensions $2a \times 2b \times d$